Copied to
clipboard

G = C30.C23order 240 = 24·3·5

17th non-split extension by C30 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D10.4D6, D6.3D10, Dic5.6D6, C30.17C23, Dic3.5D10, Dic15.14C22, C15⋊Q85C2, C5⋊D41S3, C3⋊D41D5, C159(C4○D4), C15⋊D44C2, (C2×C6).2D10, (C2×C10).1D6, C34(D42D5), C54(D42S3), (D5×Dic3)⋊4C2, (S3×Dic5)⋊3C2, C22.3(S3×D5), (C2×Dic15)⋊8C2, (C6×D5).4C22, C6.17(C22×D5), (S3×C10).3C22, (C2×C30).11C22, C10.17(C22×S3), (C3×Dic5).6C22, (C5×Dic3).5C22, C2.19(C2×S3×D5), (C3×C5⋊D4)⋊2C2, (C5×C3⋊D4)⋊1C2, SmallGroup(240,141)

Series: Derived Chief Lower central Upper central

C1C30 — C30.C23
C1C5C15C30C6×D5D5×Dic3 — C30.C23
C15C30 — C30.C23
C1C2C22

Generators and relations for C30.C23
 G = < a,b,c,d | a30=b2=d2=1, c2=a15, bab=a19, cac-1=a11, ad=da, bc=cb, dbd=a15b, dcd=a15c >

Subgroups: 312 in 80 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, D4, Q8, D5, C10, C10, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C15, C4○D4, Dic5, Dic5, C20, D10, C2×C10, C2×C10, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3⋊D4, C3×D4, C5×S3, C3×D5, C30, C30, Dic10, C4×D5, C2×Dic5, C5⋊D4, C5⋊D4, C5×D4, D42S3, C5×Dic3, C3×Dic5, Dic15, C6×D5, S3×C10, C2×C30, D42D5, D5×Dic3, S3×Dic5, C15⋊D4, C15⋊Q8, C3×C5⋊D4, C5×C3⋊D4, C2×Dic15, C30.C23
Quotients: C1, C2, C22, S3, C23, D5, D6, C4○D4, D10, C22×S3, C22×D5, D42S3, S3×D5, D42D5, C2×S3×D5, C30.C23

Smallest permutation representation of C30.C23
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(2 20)(3 9)(4 28)(5 17)(7 25)(8 14)(10 22)(12 30)(13 19)(15 27)(18 24)(23 29)(31 58)(32 47)(33 36)(34 55)(35 44)(37 52)(38 41)(39 60)(40 49)(42 57)(43 46)(45 54)(48 51)(50 59)(53 56)(61 79)(62 68)(63 87)(64 76)(66 84)(67 73)(69 81)(71 89)(72 78)(74 86)(77 83)(82 88)(91 118)(92 107)(93 96)(94 115)(95 104)(97 112)(98 101)(99 120)(100 109)(102 117)(103 106)(105 114)(108 111)(110 119)(113 116)
(1 90 16 75)(2 71 17 86)(3 82 18 67)(4 63 19 78)(5 74 20 89)(6 85 21 70)(7 66 22 81)(8 77 23 62)(9 88 24 73)(10 69 25 84)(11 80 26 65)(12 61 27 76)(13 72 28 87)(14 83 29 68)(15 64 30 79)(31 106 46 91)(32 117 47 102)(33 98 48 113)(34 109 49 94)(35 120 50 105)(36 101 51 116)(37 112 52 97)(38 93 53 108)(39 104 54 119)(40 115 55 100)(41 96 56 111)(42 107 57 92)(43 118 58 103)(44 99 59 114)(45 110 60 95)
(1 52)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 50)(30 51)(61 113)(62 114)(63 115)(64 116)(65 117)(66 118)(67 119)(68 120)(69 91)(70 92)(71 93)(72 94)(73 95)(74 96)(75 97)(76 98)(77 99)(78 100)(79 101)(80 102)(81 103)(82 104)(83 105)(84 106)(85 107)(86 108)(87 109)(88 110)(89 111)(90 112)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (2,20)(3,9)(4,28)(5,17)(7,25)(8,14)(10,22)(12,30)(13,19)(15,27)(18,24)(23,29)(31,58)(32,47)(33,36)(34,55)(35,44)(37,52)(38,41)(39,60)(40,49)(42,57)(43,46)(45,54)(48,51)(50,59)(53,56)(61,79)(62,68)(63,87)(64,76)(66,84)(67,73)(69,81)(71,89)(72,78)(74,86)(77,83)(82,88)(91,118)(92,107)(93,96)(94,115)(95,104)(97,112)(98,101)(99,120)(100,109)(102,117)(103,106)(105,114)(108,111)(110,119)(113,116), (1,90,16,75)(2,71,17,86)(3,82,18,67)(4,63,19,78)(5,74,20,89)(6,85,21,70)(7,66,22,81)(8,77,23,62)(9,88,24,73)(10,69,25,84)(11,80,26,65)(12,61,27,76)(13,72,28,87)(14,83,29,68)(15,64,30,79)(31,106,46,91)(32,117,47,102)(33,98,48,113)(34,109,49,94)(35,120,50,105)(36,101,51,116)(37,112,52,97)(38,93,53,108)(39,104,54,119)(40,115,55,100)(41,96,56,111)(42,107,57,92)(43,118,58,103)(44,99,59,114)(45,110,60,95), (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(61,113)(62,114)(63,115)(64,116)(65,117)(66,118)(67,119)(68,120)(69,91)(70,92)(71,93)(72,94)(73,95)(74,96)(75,97)(76,98)(77,99)(78,100)(79,101)(80,102)(81,103)(82,104)(83,105)(84,106)(85,107)(86,108)(87,109)(88,110)(89,111)(90,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (2,20)(3,9)(4,28)(5,17)(7,25)(8,14)(10,22)(12,30)(13,19)(15,27)(18,24)(23,29)(31,58)(32,47)(33,36)(34,55)(35,44)(37,52)(38,41)(39,60)(40,49)(42,57)(43,46)(45,54)(48,51)(50,59)(53,56)(61,79)(62,68)(63,87)(64,76)(66,84)(67,73)(69,81)(71,89)(72,78)(74,86)(77,83)(82,88)(91,118)(92,107)(93,96)(94,115)(95,104)(97,112)(98,101)(99,120)(100,109)(102,117)(103,106)(105,114)(108,111)(110,119)(113,116), (1,90,16,75)(2,71,17,86)(3,82,18,67)(4,63,19,78)(5,74,20,89)(6,85,21,70)(7,66,22,81)(8,77,23,62)(9,88,24,73)(10,69,25,84)(11,80,26,65)(12,61,27,76)(13,72,28,87)(14,83,29,68)(15,64,30,79)(31,106,46,91)(32,117,47,102)(33,98,48,113)(34,109,49,94)(35,120,50,105)(36,101,51,116)(37,112,52,97)(38,93,53,108)(39,104,54,119)(40,115,55,100)(41,96,56,111)(42,107,57,92)(43,118,58,103)(44,99,59,114)(45,110,60,95), (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(61,113)(62,114)(63,115)(64,116)(65,117)(66,118)(67,119)(68,120)(69,91)(70,92)(71,93)(72,94)(73,95)(74,96)(75,97)(76,98)(77,99)(78,100)(79,101)(80,102)(81,103)(82,104)(83,105)(84,106)(85,107)(86,108)(87,109)(88,110)(89,111)(90,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(2,20),(3,9),(4,28),(5,17),(7,25),(8,14),(10,22),(12,30),(13,19),(15,27),(18,24),(23,29),(31,58),(32,47),(33,36),(34,55),(35,44),(37,52),(38,41),(39,60),(40,49),(42,57),(43,46),(45,54),(48,51),(50,59),(53,56),(61,79),(62,68),(63,87),(64,76),(66,84),(67,73),(69,81),(71,89),(72,78),(74,86),(77,83),(82,88),(91,118),(92,107),(93,96),(94,115),(95,104),(97,112),(98,101),(99,120),(100,109),(102,117),(103,106),(105,114),(108,111),(110,119),(113,116)], [(1,90,16,75),(2,71,17,86),(3,82,18,67),(4,63,19,78),(5,74,20,89),(6,85,21,70),(7,66,22,81),(8,77,23,62),(9,88,24,73),(10,69,25,84),(11,80,26,65),(12,61,27,76),(13,72,28,87),(14,83,29,68),(15,64,30,79),(31,106,46,91),(32,117,47,102),(33,98,48,113),(34,109,49,94),(35,120,50,105),(36,101,51,116),(37,112,52,97),(38,93,53,108),(39,104,54,119),(40,115,55,100),(41,96,56,111),(42,107,57,92),(43,118,58,103),(44,99,59,114),(45,110,60,95)], [(1,52),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,50),(30,51),(61,113),(62,114),(63,115),(64,116),(65,117),(66,118),(67,119),(68,120),(69,91),(70,92),(71,93),(72,94),(73,95),(74,96),(75,97),(76,98),(77,99),(78,100),(79,101),(80,102),(81,103),(82,104),(83,105),(84,106),(85,107),(86,108),(87,109),(88,110),(89,111),(90,112)]])

C30.C23 is a maximal subgroup of
D20.39D6  D2024D6  C15⋊2- 1+4  D5×D42S3  S3×D42D5  D2013D6  C15⋊2+ 1+4
C30.C23 is a maximal quotient of
Dic155Q8  Dic5.1Dic6  C605C4⋊C2  Dic3.Dic10  (C2×C60).C22  (C4×Dic15)⋊C2  D6⋊Dic5.C2  Dic15.4Q8  D10.19(C4×S3)  (S3×Dic5)⋊C4  D10.17D12  D62Dic10  D102Dic6  Dic159D4  D6.9D20  Dic15.31D4  C23.D5⋊S3  C23.13(S3×D5)  C23.14(S3×D5)  C23.48(S3×D5)  C6.(D4×D5)  C6.(C2×D20)  (C2×C10).D12  C23.17(S3×D5)  (C6×D5)⋊D4  (S3×C10).D4  Dic1516D4  Dic1517D4  (S3×C10)⋊D4  Dic1518D4  Dic15.48D4

33 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E5A5B6A6B6C10A10B10C10D10E10F 12 15A15B20A20B30A···30F
order1222234444455666101010101010121515202030···30
size112610261015153022242022441212204412124···4

33 irreducible representations

dim1111111122222222244444
type++++++++++++++++-+-+-
imageC1C2C2C2C2C2C2C2S3D5D6D6D6C4○D4D10D10D10D42S3S3×D5D42D5C2×S3×D5C30.C23
kernelC30.C23D5×Dic3S3×Dic5C15⋊D4C15⋊Q8C3×C5⋊D4C5×C3⋊D4C2×Dic15C5⋊D4C3⋊D4Dic5D10C2×C10C15Dic3D6C2×C6C5C22C3C2C1
# reps1111111112111222212224

Matrix representation of C30.C23 in GL6(𝔽61)

6000000
0600000
0044100
00166000
0000060
0000160
,
100000
0600000
00171800
00454400
000010
000001
,
1100000
0500000
001000
000100
00004931
00001912
,
010000
100000
0060000
0006000
0000600
0000060

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,44,16,0,0,0,0,1,60,0,0,0,0,0,0,0,1,0,0,0,0,60,60],[1,0,0,0,0,0,0,60,0,0,0,0,0,0,17,45,0,0,0,0,18,44,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,50,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,49,19,0,0,0,0,31,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60] >;

C30.C23 in GAP, Magma, Sage, TeX

C_{30}.C_2^3
% in TeX

G:=Group("C30.C2^3");
// GroupNames label

G:=SmallGroup(240,141);
// by ID

G=gap.SmallGroup(240,141);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,55,218,116,490,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^30=b^2=d^2=1,c^2=a^15,b*a*b=a^19,c*a*c^-1=a^11,a*d=d*a,b*c=c*b,d*b*d=a^15*b,d*c*d=a^15*c>;
// generators/relations

׿
×
𝔽